Signaling Pathway Profiling in Multiple Myeloma

Marc S. Raab, MD PhD
Myeloma genomics

1. Chromosomal abnormalities:

- **Hyperdiploidy:**
 Trisomies of odd-numbered chromosome (3, 5, 7, 9, 11, 15, 17, 19, 21)
- **Non-hyperdiploidy:**
 Five most recurrent IgH translocations: t(4;14), t(6;14), t(11;14), t(14;16), t(14;20)

- **Copy number abnormalities:**
 +1q, del1p, del13q, del17p, del11q, del14q32
- **Secondary IgH translocations:**
 e.g MYC locus: t(8;14).

2. Somatic mutations:

- **Average tumor-specific mutations:** 80/patient;
- **No unifying driver; most mutations are at low frequencies (<5%)**
- **The most frequently affected pathways:**
 - **MAPK pathway** (3 genes): ca. 50%. *e.g. KRAS*: 20-25%; **NRAS**: 20-25%; **BRAF**: 4-9%
 - **NF-κB pathway** (27 genes): ca. 17%. *e.g. TRAF3, CYLD, TNF-C*
- **Clinical relevance of mutations:** mostly unknown

Morgan et al. Nat.Rev. 2012
BM biopsy-based signaling profiling
Total: 443 pts (481 samples)

Part I. RAS/RAF mutations ~ MAPK pathway activation
- NDMM vs. RRMM with NGS results

Part II. Signaling Pathway profiling across disease states
- Cohort-based comparison
- Longitudinal analysis

SMM: smouldering MM; NDMM: newly diagnosed MM; RRMM: refractory/relapsed MM
Patient characteristics

<table>
<thead>
<tr>
<th>Cohorts (sample No.)</th>
<th>Patients</th>
<th>Data Features</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMM (n = 33)</td>
<td>✓ smouldering multiple myeloma (SMM)</td>
<td>✓ Clinical data</td>
<td>FFPE blocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Cytogenetics (iFISH)</td>
<td></td>
</tr>
<tr>
<td>NDMM (n = 194)</td>
<td>✓ newly diagnosed symptomatic MM (NDMM)</td>
<td>✓ Survival data</td>
<td>FFPE blocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Cytogenetics (iFISH)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ panel sequencing (n = 103)</td>
<td></td>
</tr>
<tr>
<td>RRMM (n = 148)</td>
<td>✓ refractory/relapsed MM (RRMM, retrospective collection) ✓ PERMyT program (prospective cohort study)</td>
<td>✓ Clinical data</td>
<td>FFPE blocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Cytogenetics (iFISH)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Survival data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ panel sequencing (n = 77)</td>
<td></td>
</tr>
<tr>
<td>Clinical validation cohort (NDMM, n = 84)</td>
<td>✓ newly diagnosed symptomatic MM (NDMM) ✓ GMMG-HD3/4 trials; ✓ treated with HDT+ASCT</td>
<td>✓ Clinical data</td>
<td>MMA blocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Survival data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Cytogenetics (iFISH)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Partial GEP data</td>
<td></td>
</tr>
</tbody>
</table>

SMM: smouldering MM; **NDMM:** newly diagnosed MM; **RRMM:** refractory/relapsed MM; **iFISH:** interphase fluorescence *in situ* hybridization; **FFPE:** formalin-fixed paraffin-embedded; **MMA:** methylmethacrylate
Part I. Association of RAS/RAF mutations with MEK/ERK pathway activation

Targeting MAPK pathway in MM

Trametinib and RASmut MM (n = 58)

- Trametinib-containing treatment to MM
- A part of responding patients experienced durable remissions
- Overall response rate of RASmut MM -- moderate

Is RAS/RAF mutation status a suitable predictive marker for MEKi stratification?

\textit{Leukemia}

Inhibiting MEK in MAPK pathway-activated myeloma

C J Heuck, Y Jethava, R Khan, F van Rhee, M Zangari, S Chavan, K Robbins, S E Miller, A Malin, M Mohan, S M Ali, P J Stephens, J S Ross, Y A Miller, F Davies, B Barlogie & G Morgan

Modified from Andrulis & Lehners \textit{et al.} Cancer Discovery, 2013
RAS/RAF mutations in MM

Overall patterns:
- RAS/RAFmut in 50% pts
- Mutually exclusive in 90% cases
- No straight association between RAS/RAFmut and ERK activation
- Compared to NRASmut, KRASmut is more likely to be associated with ERK activation (p = 0.030)

In RRMM:
- Significant enrichment of RAS/RAF mutations (p = 0.011)
- A higher prevalence of NRAS mutations (p = 0.010)
Top 10 recurrent RAS/RAF mutations vs. other RAS/RAF mutations \sim ERK activation

- $KRAS^{G12D}$ and $BRAF^{V600E}$ are consistently associated with ERK activation compared to $RAS/BRAF^{wt}$ (Fisher’s exact test, $p < 0.001$ and $p = 0.006$)
- $KRAS^{G12D}$ is more prone to ERK activation than any other $KRAS^{mut}$ ($p = 0.007$).

Important oncogenic pathways in MM

Important growth factors and cytokines in MM:
IL-6, IGF-1, VEGF, FGF, TGFβ, TNFα...

Detection of key component in respective signaling pathway:
MAPK: pERK (Thr202/Tyr204)
PI3K-AKT: pAKT (Ser473)
JAK-STAT: pSTAT3 (Tyr705)
Canonical NFκB: IκBα
MYC: cMYC

Unsupervised/Hierarchical pathway clustering

• General pathway hierarchy:
 background activation of canonical NFκB;
 complementary ERK/AKT activation in 50% cases;
 independent STAT3/MYC activation in addition.
• Increasing complexity in pathway activation.
• Simultaneous pathway activation is common in more advanced disease.
• Two broad patient clusters: \(\text{NFκB}^{\text{high}} - \text{ERK/AKT}^{\text{low}} \) and \(\text{NFκB}^{\text{low}} - \text{ERK/AKT}^{\text{high}} \)
A strong negative correlation (Spearman’s $\rho = 0.5~0.6$) between NFkB and ERK

Moderate and increasing positive correlation (Spearman’s $\rho = 0.4~0.5$) in MYC-STAT3 and ERK–AKT axes
Longitudinal sample analysis (n = 34 pairs)

- **MYC** and **STAT3** activation **significantly increased** in consecutive samples taken sequentially from individual patients
 → association with more resistant phenotype
Activated STAT3/MYC vs. ISS staging

International Staging System (ISS):

- Three categories: stage I, II, III (advanced)
- using serum levels of beta-2 microglobulin (β2M) and albumin (ALB) as surrogate marker for tumor burden

- MYC and STAT3 activation (PC1 > 0 vs. PC1 = 0) correlated with higher ISS scores at diagnosis (Fisher’s exact test: \(p = 0.04 \) and \(p = 0.00076 \))
STAT3 and MYC activation ~ shorter survival

Progression-free survival (PFS)

- **STAT3**
 - PC1score = 0
 - PC1score > 0
 - Logrank P = 0.02

- **MYC**
 - PC1score = 0
 - PC1score > 0
 - Logrank P = 0.4

Overall survival (OS)

- **STAT3**
 - PC1score = 0
 - PC1score > 0
 - Logrank P = 0.02

- **MYC**
 - PC1score = 0
 - PC1score > 0
 - Logrank P = 0.05
RAS mutations vs. other pathways

In NDMM:
- **KRAS mutants:**
 Enrichment of strongly activated ERK

In RRMM:
- **NRAS mutants:**
 Associated with MYC activation, but **NOT** with ERK

Using mutation status alone cannot fully predict tumor behavior.
Clinical translation

BIRMA

- refractory MM
- Recruitment pool: rMM400
- Pts from all DSMM / GMMG sites
- Centralized diagnostics at Heidelberg/Würzburg
- Treatment at 5 centers,
- Extensive translational program
- Investigator initiated trial

BIRMA-1

BIRMA-2

proliferation, survival
Conclusions

1. MEK-ERK signaling in RAS/RAF-mutant MM:
 - MEK–ERK signaling activation depends on individual type of mutation, \(\text{KRAS}^{G12D}\) and \(\text{BRAF}^{V600E}\) are consistently associated with \textbf{ERK activation}
 - Overall, mutations in \textbf{KRAS} are more likely to correlate with ERK activation compared to \textbf{NRAS}. In RRMM, \textbf{NRAS} mutations may drive MYC activation
 - \textbf{DNA-based} diagnostic test is \textbf{NOT} enough, \textbf{protein-level confirmation is needed} to inform future targeted therapies

2. Pathway profiling in MM:
 - Increasing complexity in pathway activation along disease progression
 - The patients can be broadly classified into two clusters:
 \[\text{NFkB}^{\text{high}} - \text{ERK/AKT}^{\text{low}}\] and \[\text{NFkB}^{\text{low}} - \text{ERK/AKT}^{\text{high}}\]
 - Pathway hierarchy and prognostic relevance:
 background activation of NFkB;
 complementary ERK/AKT activation;
 additional STAT3/MYC activation \(\rightarrow\) \textbf{poor prognostic markers}
 - \textbf{STAT3} & \textbf{MYC} activations are associated with advanced ISS stage, high-risk cytogenetic markers and shorter OS
Acknowledgments

Myeloma Center, Dept. of Hematology/Oncology
Nicola Lehners
Elias Karl Mai
Marc-Andrea Bärtsch
Jens Hillengass
Hartmut Goldschmidt
Carsten Müller-Tidow

Inst. of Pathology, HD
Mindaugas Andrulis
Elena Ellert
Tina Uhrig
Nicole Pfarr
Volker Endris
Anna-Lena Volkmar
Jonas Leichsenring
Albrecht Stenzinger
Roland Penzel
Wilko Weichert
Peter Schirmacher

Inst. of Human Genetics
Anna Jauch
Brigitte Schöll

Thank all patients who participated in our studies!

Jing Xu
Thomas Hielscher
Nur Hafzan Md Hanafiah
Vianihuini Figueroa Vázquez
Anja Baumann
Elena Bausch
Jonathan Ko

NCT Tissue Bank
Heidelberg

German-Speaking Myeloma Multicenter Group (GMMG)

Niels Weinhold
Leo Rasche
Gareth J. Morgan
IHC evaluation of pathway activation

Pathway activity

<table>
<thead>
<tr>
<th>Pathway activity</th>
<th>MAPK pathway pERK</th>
<th>JAK-STAT pathway pSTAT3</th>
<th>NF-κB pathway IkB-alpha</th>
<th>AKT pathway pAKT</th>
<th>MYC pathway cMYC</th>
</tr>
</thead>
<tbody>
<tr>
<td>negative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>moderate activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strong activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scoring:
- Staining intensity / Spread: percentage of pos. PCs (others: BM infiltration/QC)
- Non-linear principal component analysis (NLPCA) --> **activation score: PC1**
Alteration patterns in paired samples (n = 34)

Different evolutionary patterns:
• major clone at Dx → retain dominance at relapse
• acquired therapy-resistant mutations in pathways (e.g. in NFκB or MAPK)
• clonal dominance shift

• ERK/AKT: an alternating pattern of increase and decrease → complementary role of these two pathways
• MYC/STAT3: increased activation in nearly all pts → association with disease progression
Activated STAT3/MYC vs. high-risk (HR) cytogenetic markers

<table>
<thead>
<tr>
<th>HR markers</th>
<th>Affected genes</th>
<th>NDMM%</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(4;14)</td>
<td>MMSET (always), FGFR3 (70%)</td>
<td>6-10%</td>
</tr>
<tr>
<td>gain1q21</td>
<td>CKS1B, PMSD4, ANP32E</td>
<td>35-40%</td>
</tr>
<tr>
<td>del17p13</td>
<td>TP53</td>
<td>10%</td>
</tr>
</tbody>
</table>

Other markers investigated by iFISH: diploidy (HRD/NHRD), del13q, t(11;14)

STAT3 activation (PC1 > 0 vs. PC = 0)
- Enriched in HR group: Fisher’s exact test, \(p = 0.00016 \)
- Positive correlation: t(4;14) (\(p < 0.0001 \)); gain1q21 (\(p = 0.00017 \))
- No association with del17p13 (\(p = 1.00 \))

MYC activation (PC1 > 0 vs. PC = 0)
- No association with HR group in general: \(p = 0.10 \)
- Positive correlation: gain1q21 (\(p = 0.01 \))
- Negative correlation with favorite prognostic marker: t(11;14) (\(p = 0.0024 \))

iFISH: interphase fluorescence in situ hybridization; HRD: hyperdiploidy; NHRD: non-hyperdiploidy
Principle component analysis (PCA)

- **PCA** uses an **orthogonal transformation** to convert a set of observations of possibly correlated variables into a set of values of **linearly uncorrelated** variables called **principal components**.
- **The principal components** (range: 0-1) can explain the majority of variables of possibly related datasets, therefore can be used **for reducing dimension**.

- PC1 represents nearly 90% features in our data set
- PC1 correlates with both spread and intensity
Reference table of PC1 activation scores

<table>
<thead>
<tr>
<th>Spread</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.30</td>
<td>0.35</td>
<td>0.41</td>
<td>0.46</td>
<td>0.52</td>
<td>0.57</td>
<td>0.62</td>
<td>0.68</td>
<td>0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.37</td>
<td>0.42</td>
<td>0.48</td>
<td>0.53</td>
<td>0.58</td>
<td>0.64</td>
<td>0.69</td>
<td>0.74</td>
<td>0.80</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.52</td>
<td>0.57</td>
<td>0.63</td>
<td>0.68</td>
<td>0.73</td>
<td>0.79</td>
<td>0.84</td>
<td>0.89</td>
<td>0.95</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

intensity
0-none
1-weak
2-moderate
3-strong

strong activation signal (PC1 > 0.5)
Uncategorized activation pattern

In more advanced disease:

- More frequently activated pathways (except NFκB);
- Stronger activation in each pathway (except NFκB);
- Simultaneous pathway activation

Thesis Figure 3.4, p43
Categorized activation pattern (PC1 > 0.5)

Features of potential major clone:
- Numbers of potential clones increases;
- A mutually exclusive pathway activation pattern in early and active MM;
- A strong cluster of NFκB in early MM;
- Simultaneous strong activation of multiple pathways is a hallmark of disease progression.
Activation differences in paired samples
(NDMM vs. RRMM, 16 pairs)

- NFκB decrease group:
 → ERK/AKT activation

- NFκB increase group:
 → ERK/AKT stable/descrease

Different evolutionary patterns:
- acquired therapy-resistant mutations
- major clone at Dx → retain dominance at relapse
- clonal dominance shift

Not included in thesis
Activation differences in paired samples-- lineplots
(NDMM vs. RRMM, 16 pairs)

Increase/decrease: Diff. in PC1 score ≥ variance (S^2), otherwise stable
KM estimation of OS in all NDMM

STAT3 pathway

MYC pathway

Log rank p = 0.01

Log rank p = 0.02
OS stratified with HR pathways and cytogenetic features in NDMM

STAT3 pathway

- **Cytorisk.STAT3**
 - lowrisk.zero: 68 39 24 18 5 0 0 0 0
 - highrisk.zero: 40 20 10 6 3 1 1 1 1
 - lowrisk.non-zero: 11 5 0 0 0 0 0 0 0
 - highrisk.non-zero: 21 10 4 1 0 0 0 0 0

MYC pathway

- **Cytorisk.MYC**
 - lowrisk.zero: 55 30 17 14 3 0 0 0 0
 - highrisk.zero: 32 17 10 5 3 1 1 1 1
 - lowrisk.non-zero: 24 14 7 4 2 0 0 0 0
 - highrisk.non-zero: 29 13 4 2 0 0 0 0 0

Logrank: p = 0.04773

Logrank: p = 0.0076494

Thesis Figure 3.16, p64
Activated STAT3/MYC in RRMM ~ shorter OS

Overall survival (OS)

STAT3 pathway

- PC1score = 0
- PC1score > 0

logrank-p:0.054703

MYC pathway

- PC1score = 0
- PC1score > 0

logrank-p:0.02635

PC1.SAT3.RRMM
zero: 65 20 10 7 4 4 3 1
non-zero: 66 16 4 2 1 0 0 0

PC1.MYC.RRMM
zero: 32 13 3 2 2 2 2 1
non-zero: 99 23 11 7 3 2 1 0
Risk stratification of signaling activation

Overall survival (OS)

- **Myc/pSTAT3** - median time: 23.4 months
- **NF-κB** - median time NA months
- **None** - median time NA months

Logrank p-value: 0.047363

Progression- free survival (PFS)

- **Myc/pSTAT3** - median time: 16.2 months
- **NF-κB** - median time: 50.6 months
- **None** - median time NA months

Logrank p-value: 0.39954

<table>
<thead>
<tr>
<th>Reference pathway</th>
<th>Activated pathway</th>
<th>Hazard Ratio (HR)</th>
<th>Prognosis</th>
<th>LRTp</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF-κB</td>
<td>None</td>
<td>2.67</td>
<td>intermed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERK/AKT</td>
<td>3.48</td>
<td>intermed.</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>STAT3/MYC</td>
<td>6.54</td>
<td>poor</td>
<td></td>
</tr>
</tbody>
</table>