Co-transplantation of human ovarian tissue with AMH-producing cells inhibits recruitment of primordial follicles in a short and long term grafts.

Limor Man M.D, M.Med.Sc
Assistant Professor of Research in Obstetrics and Gynecology
Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine
Weill Cornell Medicine, NYC, NY, USA
Major Obstacle Undermining Viability and Endocrine Output of Ovarian Tissue Post-Transplantation

• Loss of oocytes during transplantation occurs due to ischemia before revascularization

• Massive global activation of follicles upon transplantation is an obstacle to maintaining long-term endocrine output and salvaging a robust pool

Loss of Oocytes After Transplantation due to Ischemia
An Exogenous Cell Impetus Improves the Survival of Co-Transplanted Ovarian Tissue
Long-Term Viability and Function of Ovarian Tissue Grafts are Improved by ExECs
Massive Global Activation of Follicles upon Transplantation

![Graph showing follicle activation percentages over time.

- Primordial follicles:
 - 2W: Low percentage
 - 3W: Moderate percentage
 - 14W: Low percentage

- Primary follicles:
 - 2W: Low percentage
 - 3W: High percentage
 - 14W: High percentage

- Secondary follicles:
 - 2W: Low percentage
 - 3W: Moderate percentage
 - 14W: High percentage]
AMH Exert a Repressive Input on Activation and/or Growth of Follicles
Anti-Mullerian Hormone AMH

- Mullerian Inhibiting Substance/Factor-MIS/MIF
- A dimeric glycoprotein, member of the transforming growth factor beta superfamily – TGFβ
- In females, not expressed during ovarian sex differentiation
- Produced exclusively by granulosa cells of growing follicles from the late antenatal stage till menopause
- Pool of the primordial follicles decreased faster in AMH-Knockout than WT mice

AMH Dual Effect on Follicular Development

Efficient Transduction of Cultured ECs/MSC

Vectors-AMH

Human Endothelial Cells

AMH Conc. (ng/ml)

- GC
- EC
- AMH EC
Experimental Design

cultured ExECs

control ExECs
AMH ExECs

control ExEC or MSC fibrin clot
AMH ExEC or MSC fibrin clot

2 weeks (short term) 14 weeks (long term)

Harvest

Muscle
Fibrin Clot
Ovarian Graft
Confocal Microscopy

Endothelial Cells

Lectin-Functional Vessels

AMH-Ab

Colocalization
Most Significant Benefit to the Retention of the Quiescent Follicular Pool

AMH-ECs

- Ctl ExEC
- AMH ExEC

AMH-MSCs

- Ctl MSC
- AMH MSC

Percent of total follicles

Prim 1° 2°

Prim 1° 2°
Highest Percentage of Primordial Follicles AMH Producing ECs
A Significant Retention of Primordial Follicles was Noted Also at 14 Weeks

![Graph showing significant retention of follicles at 14 weeks.](image-url)

- Primordial: P=0.01
- Primary: P=0.05
- Secondary:
Conclusions

• Comparison of different treatments AMH-ExECs revealed the most significant benefit to the retention of the quiescent follicular pool in short and long term grafts.

• These findings present a cell-based strategy that combines accelerated perfusion with a direct paracrine delivery of a bioactive payload to transplanted ovarian tissue.

• Improved tissue viability and enforced retention of quiescent follicles can be combined to increase productivity and longevity of ovarian tissue grafts.
Future Directions

• Utilizing engineered ECs expressing secreted factors to interrogate their impact on human ovarian physiology, using our unique In vivo model
• Using a non-cellular method of delivering secreted factors for future clinical use
• Testing AMH as a chemo protectant agent
Supported by

• ASRM grant
• Clinical and Translational Science Center (CTSC) – Weill Cornell
• Internal (CRMI funding)
Acknowledgements

Laura Park
Richard Bodine
Nikica Zaninovic
Glenn Schattman
Zev Rosenwaks
Daylon James
Omar Alexander Man